Curriculum
- 12 Sections
- 141 Lessons
- 7 Days
Expand all sectionsCollapse all sections
- INTRODUCTION5
- Overview of IT Project Management4
- DE23
- 2.01.1 The Basics of Six Sigma
- 2.11.1.1 Meanings of Six Sigma
- 2.21.1.2 General History of Six Sigma & Continuous Improvement
- 2.31.1.3 Deliverables of a Lean Six Sigma Project
- 2.41.1.4 The Problem Solving Strategy Y = f(x)
- 2.51.1.5 Voice of the Customer, Business and Employee
- 2.61.1.6 Six Sigma Roles & Responsibilities
- 2.71.2.1 Defining a Process
- 2.81.2 The Fundamentals of Six Sigma
- 2.91.2.2 Critical to Quality Characteristics (CTQ’s)
- 2.101.2.3 Cost of Poor Quality (COPQ)
- 2.111.2.4 Pareto Analysis (80:20 rule)
- 2.121.2.5 Basic Six Sigma Metrics
- 2.131.3 Selecting Lean Six Sigma Projects
- 2.141.3.2 Developing Project Metrics
- 2.151.3.1 Building a Business Case & Project Charter
- 2.161.3.3 Financial Evaluation & Benefits Capture
- 2.171.4 The Lean Enterprise
- 2.181.4.1 Basics of Lean
- 2.191.4.3 Lean & Six Sigma Integration
- 2.191.4.2 History of Lean
- 2.191.4.5 5S – Straighten, Shine, Standardize, Self-Discipline, Sort
- 2.191.4.4 The Seven Elements of Waste
- Risk Management Planning and Identifying Risks3
- MEASURE15
- 3.0Process Mapping (As-Is Process)
- 3.1Data Attributes (Continuous Versus Discrete)
- 3.2Defining Metrics
- 3.3Measurement System Analysis
- 3.4Gage Repeatability And Reproducibility
- 3.5Data Collection Techniques
- 3.6Calculating Sample Size
- 3.7Data Collection Plan
- 3.8Understanding Variation
- 3.9Measuring Process Capability
- 3.10Calculating Process Sigma Level
- 3.11Rolled Throughput Yield
- 3.12Measurement Phase Review
- 3.12Statistical Software Training
- 3.12Visually Displaying Baseline Performance
- Analysis Fundamentals3
- ANALYZE24
- 4.03.1 Patterns of Variation
- 4.13.1.1 Multi-Vari Analysis
- 4.23.1.2 Classes of Distributions
- 4.33.2 Inferential Statistics
- 4.43.2.1 Understanding Inference
- 4.53.2.2 Sampling Techniques & Uses
- 4.63.2.3 Central Limit Theorem
- 4.73.3 Hypothesis Testing
- 4.83.3.1 General Concepts & Goals of Hypothesis Testing
- 4.93.3.2 Significance; Practical vs. Statistical
- 4.103.3.3 Risk; Alpha & Beta
- 4.113.4 Hypothesis Testing with Normal Data
- 4.123.4.1 1-sample & 2 sample t-tests
- 4.133.4.2 One-Way ANOVA
- 4.143.4.3 Two-Way ANOVA
- 4.153.5 Hypothesis Testing with Non-Normal Data
- 4.163.5.1 Mann-Whitney
- 4.173.5.2 Kruskal-Wallis
- 4.183.5.3 Mood’s Median
- 4.193.5.4 Friedman
- 4.203.5.5 1 Sample Sign
- 4.213.5.6 1 Sample Wilcoxon
- 4.223.5.7 One and Two Sample Proportion
- 4.233.5.8 Chi-Squared (Contingency Tables)
- Analysing and Prioritising Risk7
- IMPROVE25
- 5.04.1 Simple Linear Regression
- 5.14.1.1 Correlation
- 5.24.1.2 Regression Equations
- 5.34.1.3 Residuals Diagnostics Analysis
- 5.44.2 Multiple Regression Analysis
- 5.54.2.1 Non-Linear Regression
- 5.64.2.2 Multiple Linear Regression
- 5.74.2.3 Confidence & Prediction Intervals
- 5.84.2.4 Residuals Diagnostics Analysis
- 5.94.2.5 Data Transformation, Box Cox Technique
- 5.104.3 Designed Experiments
- 5.114.3.1 Experimental Objectives
- 5.124.3.2 Experimental Methods
- 5.134.3.3 Experiment Design Considerations
- 5.144.4 Full Factorial Experiments
- 5.154.4.1 2k Full Factorial Designs
- 5.164.4.2 Linear & Quadratic Mathematical Models
- 5.174.4.3 Balanced & Orthogonal Designs
- 5.184.4.4 Fit, Diagnose Model and Center Points
- 5.194.5 Fractional Factorial Experiments
- 5.204.5.1 Designs
- 5.214.5.2 Confounding Effects
- 5.224.5.3 Experimental Resolution
- 5.234.6 Advanced Experiments
- 5.244.6.1 Steepest Ascent Analysis
- Risk Response Planning5
- CONTROL21
- 6.05.1 Lean Controls
- 6.15.3.1 Control Methods for 5S
- 6.25.3.2 Kanban (Pull Systems)
- 6.35.3.3 Poka-Yoke (Mistake Proofing)
- 6.45.2 Statistical Process Control (SPC)
- 6.55.4.1 Data Collection for SPC
- 6.65.4.2 I-MR Chart
- 6.75.4.3 Xbar-R Chart
- 6.85.4.4 U Chart
- 6.95.4.5 P Chart
- 6.105.4.6 NP Chart
- 6.115.4.7 Xbar-S Chart
- 6.125.4.8 CumSum Chart
- 6.135.4.9 EWMA Chart
- 6.145.4.10 Control Methods
- 6.155.3 Six Sigma Control Plans
- 6.165.6.1 Cost Benefit Analysis
- 6.16EXAM DAY ON THE LAST DAY
- 6.165.6.2 Elements of the Control Plan
- 6.16EXAM DAY ON THE LAST DAY
- 6.165.6.3 Elements of the Response Plan
- Construction Phase6
The Six Sigma Language
Next